Copied to
clipboard

G = C2×C23.21D14order 448 = 26·7

Direct product of C2 and C23.21D14

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C23.21D14, C24.68D14, (C22×C28)⋊16C4, (C23×C4).12D7, (C23×C28).17C2, C14.43(C23×C4), C4⋊Dic783C22, (C22×C4)⋊10Dic7, C144(C42⋊C2), C2.5(C23×Dic7), C28.181(C22×C4), (C2×C28).885C23, (C2×C14).284C24, (C4×Dic7)⋊81C22, (C22×C4).448D14, C23.36(C2×Dic7), C4.39(C22×Dic7), C22.41(C23×D7), C22.80(C4○D28), C23.232(C22×D7), (C22×C14).413C23, (C22×C28).547C22, (C23×C14).106C22, (C2×Dic7).278C23, C23.D7.144C22, C22.31(C22×Dic7), (C22×Dic7).229C22, (C2×C28)⋊37(C2×C4), C75(C2×C42⋊C2), (C2×C4×Dic7)⋊37C2, C2.5(C2×C4○D28), (C2×C4⋊Dic7)⋊50C2, C14.60(C2×C4○D4), (C2×C4)⋊11(C2×Dic7), (C2×C4).829(C22×D7), (C2×C23.D7).25C2, (C2×C14).111(C4○D4), (C2×C14).208(C22×C4), (C22×C14).143(C2×C4), SmallGroup(448,1239)

Series: Derived Chief Lower central Upper central

C1C14 — C2×C23.21D14
C1C7C14C2×C14C2×Dic7C22×Dic7C2×C4×Dic7 — C2×C23.21D14
C7C14 — C2×C23.21D14
C1C22×C4C23×C4

Generators and relations for C2×C23.21D14
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e14=d, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, ce=ec, cf=fc, de=ed, df=fd, fef-1=e13 >

Subgroups: 900 in 330 conjugacy classes, 207 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C23, C23, C23, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C24, Dic7, C28, C2×C14, C2×C14, C2×C14, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C23×C4, C2×Dic7, C2×Dic7, C2×C28, C22×C14, C22×C14, C22×C14, C2×C42⋊C2, C4×Dic7, C4⋊Dic7, C23.D7, C22×Dic7, C22×C28, C22×C28, C23×C14, C2×C4×Dic7, C2×C4⋊Dic7, C23.21D14, C2×C23.D7, C23×C28, C2×C23.21D14
Quotients: C1, C2, C4, C22, C2×C4, C23, D7, C22×C4, C4○D4, C24, Dic7, D14, C42⋊C2, C23×C4, C2×C4○D4, C2×Dic7, C22×D7, C2×C42⋊C2, C4○D28, C22×Dic7, C23×D7, C23.21D14, C2×C4○D28, C23×Dic7, C2×C23.21D14

Smallest permutation representation of C2×C23.21D14
On 224 points
Generators in S224
(1 160)(2 161)(3 162)(4 163)(5 164)(6 165)(7 166)(8 167)(9 168)(10 141)(11 142)(12 143)(13 144)(14 145)(15 146)(16 147)(17 148)(18 149)(19 150)(20 151)(21 152)(22 153)(23 154)(24 155)(25 156)(26 157)(27 158)(28 159)(29 98)(30 99)(31 100)(32 101)(33 102)(34 103)(35 104)(36 105)(37 106)(38 107)(39 108)(40 109)(41 110)(42 111)(43 112)(44 85)(45 86)(46 87)(47 88)(48 89)(49 90)(50 91)(51 92)(52 93)(53 94)(54 95)(55 96)(56 97)(57 115)(58 116)(59 117)(60 118)(61 119)(62 120)(63 121)(64 122)(65 123)(66 124)(67 125)(68 126)(69 127)(70 128)(71 129)(72 130)(73 131)(74 132)(75 133)(76 134)(77 135)(78 136)(79 137)(80 138)(81 139)(82 140)(83 113)(84 114)(169 202)(170 203)(171 204)(172 205)(173 206)(174 207)(175 208)(176 209)(177 210)(178 211)(179 212)(180 213)(181 214)(182 215)(183 216)(184 217)(185 218)(186 219)(187 220)(188 221)(189 222)(190 223)(191 224)(192 197)(193 198)(194 199)(195 200)(196 201)
(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)
(1 182)(2 183)(3 184)(4 185)(5 186)(6 187)(7 188)(8 189)(9 190)(10 191)(11 192)(12 193)(13 194)(14 195)(15 196)(16 169)(17 170)(18 171)(19 172)(20 173)(21 174)(22 175)(23 176)(24 177)(25 178)(26 179)(27 180)(28 181)(29 131)(30 132)(31 133)(32 134)(33 135)(34 136)(35 137)(36 138)(37 139)(38 140)(39 113)(40 114)(41 115)(42 116)(43 117)(44 118)(45 119)(46 120)(47 121)(48 122)(49 123)(50 124)(51 125)(52 126)(53 127)(54 128)(55 129)(56 130)(57 110)(58 111)(59 112)(60 85)(61 86)(62 87)(63 88)(64 89)(65 90)(66 91)(67 92)(68 93)(69 94)(70 95)(71 96)(72 97)(73 98)(74 99)(75 100)(76 101)(77 102)(78 103)(79 104)(80 105)(81 106)(82 107)(83 108)(84 109)(141 224)(142 197)(143 198)(144 199)(145 200)(146 201)(147 202)(148 203)(149 204)(150 205)(151 206)(152 207)(153 208)(154 209)(155 210)(156 211)(157 212)(158 213)(159 214)(160 215)(161 216)(162 217)(163 218)(164 219)(165 220)(166 221)(167 222)(168 223)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)(169 183)(170 184)(171 185)(172 186)(173 187)(174 188)(175 189)(176 190)(177 191)(178 192)(179 193)(180 194)(181 195)(182 196)(197 211)(198 212)(199 213)(200 214)(201 215)(202 216)(203 217)(204 218)(205 219)(206 220)(207 221)(208 222)(209 223)(210 224)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 70 196 109)(2 83 169 94)(3 68 170 107)(4 81 171 92)(5 66 172 105)(6 79 173 90)(7 64 174 103)(8 77 175 88)(9 62 176 101)(10 75 177 86)(11 60 178 99)(12 73 179 112)(13 58 180 97)(14 71 181 110)(15 84 182 95)(16 69 183 108)(17 82 184 93)(18 67 185 106)(19 80 186 91)(20 65 187 104)(21 78 188 89)(22 63 189 102)(23 76 190 87)(24 61 191 100)(25 74 192 85)(26 59 193 98)(27 72 194 111)(28 57 195 96)(29 157 117 198)(30 142 118 211)(31 155 119 224)(32 168 120 209)(33 153 121 222)(34 166 122 207)(35 151 123 220)(36 164 124 205)(37 149 125 218)(38 162 126 203)(39 147 127 216)(40 160 128 201)(41 145 129 214)(42 158 130 199)(43 143 131 212)(44 156 132 197)(45 141 133 210)(46 154 134 223)(47 167 135 208)(48 152 136 221)(49 165 137 206)(50 150 138 219)(51 163 139 204)(52 148 140 217)(53 161 113 202)(54 146 114 215)(55 159 115 200)(56 144 116 213)

G:=sub<Sym(224)| (1,160)(2,161)(3,162)(4,163)(5,164)(6,165)(7,166)(8,167)(9,168)(10,141)(11,142)(12,143)(13,144)(14,145)(15,146)(16,147)(17,148)(18,149)(19,150)(20,151)(21,152)(22,153)(23,154)(24,155)(25,156)(26,157)(27,158)(28,159)(29,98)(30,99)(31,100)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(41,110)(42,111)(43,112)(44,85)(45,86)(46,87)(47,88)(48,89)(49,90)(50,91)(51,92)(52,93)(53,94)(54,95)(55,96)(56,97)(57,115)(58,116)(59,117)(60,118)(61,119)(62,120)(63,121)(64,122)(65,123)(66,124)(67,125)(68,126)(69,127)(70,128)(71,129)(72,130)(73,131)(74,132)(75,133)(76,134)(77,135)(78,136)(79,137)(80,138)(81,139)(82,140)(83,113)(84,114)(169,202)(170,203)(171,204)(172,205)(173,206)(174,207)(175,208)(176,209)(177,210)(178,211)(179,212)(180,213)(181,214)(182,215)(183,216)(184,217)(185,218)(186,219)(187,220)(188,221)(189,222)(190,223)(191,224)(192,197)(193,198)(194,199)(195,200)(196,201), (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140), (1,182)(2,183)(3,184)(4,185)(5,186)(6,187)(7,188)(8,189)(9,190)(10,191)(11,192)(12,193)(13,194)(14,195)(15,196)(16,169)(17,170)(18,171)(19,172)(20,173)(21,174)(22,175)(23,176)(24,177)(25,178)(26,179)(27,180)(28,181)(29,131)(30,132)(31,133)(32,134)(33,135)(34,136)(35,137)(36,138)(37,139)(38,140)(39,113)(40,114)(41,115)(42,116)(43,117)(44,118)(45,119)(46,120)(47,121)(48,122)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,129)(56,130)(57,110)(58,111)(59,112)(60,85)(61,86)(62,87)(63,88)(64,89)(65,90)(66,91)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,101)(77,102)(78,103)(79,104)(80,105)(81,106)(82,107)(83,108)(84,109)(141,224)(142,197)(143,198)(144,199)(145,200)(146,201)(147,202)(148,203)(149,204)(150,205)(151,206)(152,207)(153,208)(154,209)(155,210)(156,211)(157,212)(158,213)(159,214)(160,215)(161,216)(162,217)(163,218)(164,219)(165,220)(166,221)(167,222)(168,223), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,70,196,109)(2,83,169,94)(3,68,170,107)(4,81,171,92)(5,66,172,105)(6,79,173,90)(7,64,174,103)(8,77,175,88)(9,62,176,101)(10,75,177,86)(11,60,178,99)(12,73,179,112)(13,58,180,97)(14,71,181,110)(15,84,182,95)(16,69,183,108)(17,82,184,93)(18,67,185,106)(19,80,186,91)(20,65,187,104)(21,78,188,89)(22,63,189,102)(23,76,190,87)(24,61,191,100)(25,74,192,85)(26,59,193,98)(27,72,194,111)(28,57,195,96)(29,157,117,198)(30,142,118,211)(31,155,119,224)(32,168,120,209)(33,153,121,222)(34,166,122,207)(35,151,123,220)(36,164,124,205)(37,149,125,218)(38,162,126,203)(39,147,127,216)(40,160,128,201)(41,145,129,214)(42,158,130,199)(43,143,131,212)(44,156,132,197)(45,141,133,210)(46,154,134,223)(47,167,135,208)(48,152,136,221)(49,165,137,206)(50,150,138,219)(51,163,139,204)(52,148,140,217)(53,161,113,202)(54,146,114,215)(55,159,115,200)(56,144,116,213)>;

G:=Group( (1,160)(2,161)(3,162)(4,163)(5,164)(6,165)(7,166)(8,167)(9,168)(10,141)(11,142)(12,143)(13,144)(14,145)(15,146)(16,147)(17,148)(18,149)(19,150)(20,151)(21,152)(22,153)(23,154)(24,155)(25,156)(26,157)(27,158)(28,159)(29,98)(30,99)(31,100)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(41,110)(42,111)(43,112)(44,85)(45,86)(46,87)(47,88)(48,89)(49,90)(50,91)(51,92)(52,93)(53,94)(54,95)(55,96)(56,97)(57,115)(58,116)(59,117)(60,118)(61,119)(62,120)(63,121)(64,122)(65,123)(66,124)(67,125)(68,126)(69,127)(70,128)(71,129)(72,130)(73,131)(74,132)(75,133)(76,134)(77,135)(78,136)(79,137)(80,138)(81,139)(82,140)(83,113)(84,114)(169,202)(170,203)(171,204)(172,205)(173,206)(174,207)(175,208)(176,209)(177,210)(178,211)(179,212)(180,213)(181,214)(182,215)(183,216)(184,217)(185,218)(186,219)(187,220)(188,221)(189,222)(190,223)(191,224)(192,197)(193,198)(194,199)(195,200)(196,201), (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140), (1,182)(2,183)(3,184)(4,185)(5,186)(6,187)(7,188)(8,189)(9,190)(10,191)(11,192)(12,193)(13,194)(14,195)(15,196)(16,169)(17,170)(18,171)(19,172)(20,173)(21,174)(22,175)(23,176)(24,177)(25,178)(26,179)(27,180)(28,181)(29,131)(30,132)(31,133)(32,134)(33,135)(34,136)(35,137)(36,138)(37,139)(38,140)(39,113)(40,114)(41,115)(42,116)(43,117)(44,118)(45,119)(46,120)(47,121)(48,122)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,129)(56,130)(57,110)(58,111)(59,112)(60,85)(61,86)(62,87)(63,88)(64,89)(65,90)(66,91)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,101)(77,102)(78,103)(79,104)(80,105)(81,106)(82,107)(83,108)(84,109)(141,224)(142,197)(143,198)(144,199)(145,200)(146,201)(147,202)(148,203)(149,204)(150,205)(151,206)(152,207)(153,208)(154,209)(155,210)(156,211)(157,212)(158,213)(159,214)(160,215)(161,216)(162,217)(163,218)(164,219)(165,220)(166,221)(167,222)(168,223), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,70,196,109)(2,83,169,94)(3,68,170,107)(4,81,171,92)(5,66,172,105)(6,79,173,90)(7,64,174,103)(8,77,175,88)(9,62,176,101)(10,75,177,86)(11,60,178,99)(12,73,179,112)(13,58,180,97)(14,71,181,110)(15,84,182,95)(16,69,183,108)(17,82,184,93)(18,67,185,106)(19,80,186,91)(20,65,187,104)(21,78,188,89)(22,63,189,102)(23,76,190,87)(24,61,191,100)(25,74,192,85)(26,59,193,98)(27,72,194,111)(28,57,195,96)(29,157,117,198)(30,142,118,211)(31,155,119,224)(32,168,120,209)(33,153,121,222)(34,166,122,207)(35,151,123,220)(36,164,124,205)(37,149,125,218)(38,162,126,203)(39,147,127,216)(40,160,128,201)(41,145,129,214)(42,158,130,199)(43,143,131,212)(44,156,132,197)(45,141,133,210)(46,154,134,223)(47,167,135,208)(48,152,136,221)(49,165,137,206)(50,150,138,219)(51,163,139,204)(52,148,140,217)(53,161,113,202)(54,146,114,215)(55,159,115,200)(56,144,116,213) );

G=PermutationGroup([[(1,160),(2,161),(3,162),(4,163),(5,164),(6,165),(7,166),(8,167),(9,168),(10,141),(11,142),(12,143),(13,144),(14,145),(15,146),(16,147),(17,148),(18,149),(19,150),(20,151),(21,152),(22,153),(23,154),(24,155),(25,156),(26,157),(27,158),(28,159),(29,98),(30,99),(31,100),(32,101),(33,102),(34,103),(35,104),(36,105),(37,106),(38,107),(39,108),(40,109),(41,110),(42,111),(43,112),(44,85),(45,86),(46,87),(47,88),(48,89),(49,90),(50,91),(51,92),(52,93),(53,94),(54,95),(55,96),(56,97),(57,115),(58,116),(59,117),(60,118),(61,119),(62,120),(63,121),(64,122),(65,123),(66,124),(67,125),(68,126),(69,127),(70,128),(71,129),(72,130),(73,131),(74,132),(75,133),(76,134),(77,135),(78,136),(79,137),(80,138),(81,139),(82,140),(83,113),(84,114),(169,202),(170,203),(171,204),(172,205),(173,206),(174,207),(175,208),(176,209),(177,210),(178,211),(179,212),(180,213),(181,214),(182,215),(183,216),(184,217),(185,218),(186,219),(187,220),(188,221),(189,222),(190,223),(191,224),(192,197),(193,198),(194,199),(195,200),(196,201)], [(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140)], [(1,182),(2,183),(3,184),(4,185),(5,186),(6,187),(7,188),(8,189),(9,190),(10,191),(11,192),(12,193),(13,194),(14,195),(15,196),(16,169),(17,170),(18,171),(19,172),(20,173),(21,174),(22,175),(23,176),(24,177),(25,178),(26,179),(27,180),(28,181),(29,131),(30,132),(31,133),(32,134),(33,135),(34,136),(35,137),(36,138),(37,139),(38,140),(39,113),(40,114),(41,115),(42,116),(43,117),(44,118),(45,119),(46,120),(47,121),(48,122),(49,123),(50,124),(51,125),(52,126),(53,127),(54,128),(55,129),(56,130),(57,110),(58,111),(59,112),(60,85),(61,86),(62,87),(63,88),(64,89),(65,90),(66,91),(67,92),(68,93),(69,94),(70,95),(71,96),(72,97),(73,98),(74,99),(75,100),(76,101),(77,102),(78,103),(79,104),(80,105),(81,106),(82,107),(83,108),(84,109),(141,224),(142,197),(143,198),(144,199),(145,200),(146,201),(147,202),(148,203),(149,204),(150,205),(151,206),(152,207),(153,208),(154,209),(155,210),(156,211),(157,212),(158,213),(159,214),(160,215),(161,216),(162,217),(163,218),(164,219),(165,220),(166,221),(167,222),(168,223)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168),(169,183),(170,184),(171,185),(172,186),(173,187),(174,188),(175,189),(176,190),(177,191),(178,192),(179,193),(180,194),(181,195),(182,196),(197,211),(198,212),(199,213),(200,214),(201,215),(202,216),(203,217),(204,218),(205,219),(206,220),(207,221),(208,222),(209,223),(210,224)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,70,196,109),(2,83,169,94),(3,68,170,107),(4,81,171,92),(5,66,172,105),(6,79,173,90),(7,64,174,103),(8,77,175,88),(9,62,176,101),(10,75,177,86),(11,60,178,99),(12,73,179,112),(13,58,180,97),(14,71,181,110),(15,84,182,95),(16,69,183,108),(17,82,184,93),(18,67,185,106),(19,80,186,91),(20,65,187,104),(21,78,188,89),(22,63,189,102),(23,76,190,87),(24,61,191,100),(25,74,192,85),(26,59,193,98),(27,72,194,111),(28,57,195,96),(29,157,117,198),(30,142,118,211),(31,155,119,224),(32,168,120,209),(33,153,121,222),(34,166,122,207),(35,151,123,220),(36,164,124,205),(37,149,125,218),(38,162,126,203),(39,147,127,216),(40,160,128,201),(41,145,129,214),(42,158,130,199),(43,143,131,212),(44,156,132,197),(45,141,133,210),(46,154,134,223),(47,167,135,208),(48,152,136,221),(49,165,137,206),(50,150,138,219),(51,163,139,204),(52,148,140,217),(53,161,113,202),(54,146,114,215),(55,159,115,200),(56,144,116,213)]])

136 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I4J4K4L4M···4AB7A7B7C14A···14AS28A···28AV
order12···222224···444444···477714···1428···28
size11···122221···1222214···142222···22···2

136 irreducible representations

dim1111111222222
type+++++++-++
imageC1C2C2C2C2C2C4D7C4○D4Dic7D14D14C4○D28
kernelC2×C23.21D14C2×C4×Dic7C2×C4⋊Dic7C23.21D14C2×C23.D7C23×C28C22×C28C23×C4C2×C14C22×C4C22×C4C24C22
# reps12282116382418348

Matrix representation of C2×C23.21D14 in GL5(𝔽29)

280000
028000
002800
000280
000028
,
280000
01000
002800
00010
000028
,
280000
028000
002800
00010
00001
,
10000
028000
002800
000280
000028
,
280000
012000
001200
000140
00002
,
170000
001200
017000
00001
000280

G:=sub<GL(5,GF(29))| [28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28],[28,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,28],[28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28],[28,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,14,0,0,0,0,0,2],[17,0,0,0,0,0,0,17,0,0,0,12,0,0,0,0,0,0,0,28,0,0,0,1,0] >;

C2×C23.21D14 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{21}D_{14}
% in TeX

G:=Group("C2xC2^3.21D14");
// GroupNames label

G:=SmallGroup(448,1239);
// by ID

G=gap.SmallGroup(448,1239);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,112,184,1123,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^14=d,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^13>;
// generators/relations

׿
×
𝔽